A Broad Study of Pre-training for Domain Generalization and Adaptation
نویسندگان
چکیده
Deep models must learn robust and transferable representations in order to perform well on new domains. While domain transfer methods (e.g., adaptation, generalization) have been proposed across domains, they are typically applied ResNet backbones pre-trained ImageNet. Thus, existing works pay little attention the effects of pre-training tasks. In this paper, we provide a broad study in-depth analysis for adaptation generalization, namely: network architectures, size, loss, datasets. We observe that simply using state-of-the-art backbone outperforms baselines set Office-Home DomainNet improving by 10.7% 5.5%. hope work can more insights future research.
منابع مشابه
Generalization Bounds for Domain Adaptation
In this paper, we provide a new framework to study the generalization bound of the learning process for domain adaptation. We consider two kinds of representative domain adaptation settings: one is domain adaptation with multiple sources and the other is domain adaptation combining source and target data. In particular, we use the integral probability metric to measure the difference between tw...
متن کاملa generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
Generalization Bounds for Representative Domain Adaptation
In this paper, we propose a novel framework to analyze the theoretical properties of thelearning process for a representative type of domain adaptation, which combines data frommultiple sources and one target (or briefly called representative domain adaptation). Inparticular, we use the integral probability metric to measure the difference between the dis-tributions of two d...
متن کاملSample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملCo-Training for Domain Adaptation
Domain adaptation algorithms seek to generalize a model trained in a source domain to a new target domain. In many practical cases, the source and target distributions can differ substantially, and in some cases crucial target features may not have support in the source domain. In this paper we introduce an algorithm that bridges the gap between source and target domains by slowly adding to the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Computer Science
سال: 2022
ISSN: ['1611-3349', '0302-9743']
DOI: https://doi.org/10.1007/978-3-031-19827-4_36